Вопрос 17

В информатике, теория сложности вычислений является разделом теории вычислений, изучающим стоимость работы, требуемой для решения вычислительной проблемы. Стоимость обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения проблемы, тогда как пространство определяется объёмом памяти или места на носителе данных. Таким образом, в этой области предпринимается попытка ответить на центральный вопрос разработки алгоритмов: «как изменится время исполнения и объём занятой памяти в зависимости от размера входа и выхода?». Здесь под размером входа понимается длина описания данных задачи в битах (например, в задаче коммивояжера длина входа пропорциональна количеству городов и дорог между ними), а под размером выхода — длина описания решения задачи (оптимального маршрута в задаче коммивояжера).
Временная и пространственная сложности
Теория сложности вычислений возникла из потребности сравнивать быстродействие алгоритмов, чётко описывать их поведение (время исполнения и объём необходимой памяти) в зависимости от размера входа и выхода.
Количество элементарных операций, затраченных алгоритмом для решения конкретного экземпляра задачи, зависит не только от размера входных данных, но и от самих данных. Например, количество операций алгоритма сортировки вставками значительно меньше в случае, если входные данные уже отсортированы. Чтобы избежать подобных трудностей, рассматривают понятие временной сложности алгоритма в худшем случае.
Временная сложность алгоритма (в худшем случае) — это функция размера входных и выходных данных, равная максимальному количеству элементарных операций, проделываемых алгоритмом для решения экземпляра задачи указанного размера. В задачах, где размер выхода не превосходит или пропорционален размеру входа, можно рассматривать временную сложность как функцию размера только входных данных.
Аналогично понятию временной сложности в худшем случае определяется понятие временная сложность алгоритма в наилучшем случае. Также рассматривают понятие среднее время работы алгоритма, то есть математическое ожидание времени работы алгоритма. Иногда говорят просто: «Временная сложность алгоритма» или «Время работы алгоритма», имея в виду временную сложность алгоритма в худшем, наилучшем или среднем случае (в зависимости от контекста).
По аналогии с временной сложностью, определяют пространственную сложность алгоритма, только здесь говорят не о количестве элементарных операций, а об объёме используемой памяти.

Асимптотическая сложность

Несмотря на то, что функция временной сложности алгоритма в некоторых случаях может быть определена точно, в большинстве случаев искать точное её значение бессмысленно. Дело в том, что во-первых, точное значение временной сложности зависит от определения элементарных операций (например, сложность можно измерять в количестве арифметических операций, битовых операций или операций на машине Тьюринга), а во-вторых, при увеличении размера входных данных вклад постоянных множителей и слагаемых низших порядков, фигурирующих в выражении для точного времени работы, становится крайне незначительным.
Рассмотрение входных данных большого размера и оценка порядка роста времени работы алгоритма приводят к понятию асимптотической сложности алгоритма. При этом алгоритм с меньшей асимптотической сложностью является более эффективным для всех входных данных, за исключением лишь, возможно, данных малого размера.

Классы сложности

Класс сложности — это множество задач распознавания, для решения которых существуют алгоритмы, схожие по вычислительной сложности. Два важных представителя:

Класс P

Класс P вмещает все те проблемы, решение которых считается «быстрым», то есть полиномиально зависящим от размера входа. Сюда относится сортировка, поиск во множестве, выяснение связности графов и многие другие.

Класс NP

Класс NP содержит задачи, которые недетерминированная машина Тьюринга в состоянии решить за полиномиальное количество времени. Следует заметить, что недетерминированная машина Тьюринга является лишь абстрактной моделью, в то время как современные компьютеры соответствуют детерминированной машине Тьюринга с ограниченной памятью. Таким образом, класс NP включает в себя класс P, а также некоторые проблемы, для решения которых известны лишь алгоритмы, экспоненциально зависящие от размера входа (то есть неэффективные для больших входов). В класс NP входят многие знаменитые проблемы, такие как задача коммивояжёра, задача выполнимости булевых формул, факторизация и др.

Проблема равенства классов P и NP

Вопрос о равенстве этих двух классов считается одной из самых сложных открытых проблем в области теоретической информатики. Математический институт Клэя включил эту проблему в список проблем тысячелетия, предложив награду размером в один миллион долларов США за её решение.


На Главную

Hosted by uCoz