Це́пь Ма́ркова — последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова (старшего).
Граф переходов, связность и эргодические цепи Маркова
Для цепи Маркова с непрерывным временем строится ориентированный граф переходов (кратко — граф переходов) по следующим правилам:
Топологические свойства графа переходов связаны со спектральными свойствами матрицы . В частности, для конечных цепей Маркова верны следующие теоремы:
А. Для любых двух различных вершин графа переходов найдется такая вершина k графа («общий сток»), что существуют ориентированные пути от вершины i к вершине k и от вершины j к вершине k. Замечание: возможен случай k = i или k = j; в этом случае тривиальный (пустой) путь от i к i или от j к j также считается ориентированным путем.
Б. Нулевое собственное число матрицы невырождено.
В. При матрица стремится к матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).
А. Граф переходов цепи ориентированно связен.
Б. Нулевое собственное число матрицы невырождено и ему соответствует строго положительный левый собственный вектор (равновесное распределение).
В. Для некоторого t > 0 матрица строго положительна (то есть Pij(t) > 0 для всех i,j).
Г. Для всех t > 0 матрица строго положительна.
Д. При матрица стремится к строго положительной матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).
Примеры
Рис. Примеры графов переходов для цепей Маркова: a) цепь не является слабо эргодической (не существует общего стока для состояний ); b) слабо эргодическая, но не эргодическая цепь (граф переходов не является ориентированно связным) c) эргодическая цепь (граф переходов ориентированно связен).
Рассмотрим цепи Маркова с тремя состояниями и с непрерывным временем, соответствующие графам переходов, представленным на рис. В случае (a) отличны от нуля только следующие недиагональные элементы матрицы интенсивностей — , в случае (b) отличны от нуля только , а в случае (c) — . Остальные элементы определяются свойствами матрицы (сумма элементов в каждой строке равна 0). В результате для графов (a), (b), (c) матрицы интенсивностей имеют вид: